The independence of instance and subkind countability

Aviv Schoenfeld Kurt Erbach Tel Aviv University Universität Bonn 15th International Conference on the Structure of Hungarian August 26th 2021, 9:40-10:20, University of Pécs

Introduction

- Language has two sorts of countability: Instance and subkind.
- The two most popular dogs are
 - 1. Toto and Lassie. *instances of the dog species (dog specimens)*
 - 2. Labradors and bulldogs. *subkinds of the dog species (dog breeds)*
- Sutton & Filip (2016, 2018): Both sorts of countability are licensed by disjointedness between entities that can count as one.
- Appealing to disjointedness is challenged by cases where the two sorts of countability do not pattern together.

Introduction

- Claim: Subkind-countability is not licensed by disjointedness.
- 1. sl.<u>4</u>-<u>13</u>: Challenges to disjointedness.
- 2. sl.<u>14</u>-<u>38</u>: Formalize and modify the analyses of Carlson (1980:§6.1) and Grimm & Levin (2017).
- 3. sl.<u>39-47</u>: Certain differences between Hungarian and English are correlated with the former having general number.
 - In the sense of Corbett (2000), Paul (2012).
- 4. sl.<u>48</u>-<u>56</u>: Subkind-countability is licensed by conceptual well-foundedness.

Background: Object mass nouns

- In English, object mass nouns (*ammunition*) cannot count instances or subkinds unless combined with classifiers (*unit, kind*).
 - (Cowper & Hall 2012:§3.2.2, Rothstein 2017:§4.6,

Grimm & Levin 2017, Sutton & Filip 2018)

- What fell on the floor was two {bullets, #ammunitions, units of ammunition}. *instances*
- 2. Hollow-point and soft-point bullets are our two best-selling {bullets, #ammunitions, kinds of ammunition}. *subkinds*

- Sutton & Filip: Object mass nouns (in English) lack both sorts of countability due to being unable to resolve overlap.
- 1. *Kitchenware* cannot count instances due to being unable to resolve overlap between instances that can count as one.
 - e.g. a mortar and pestle and the mortar (2016).

- In context c₂, the mortar and pestle count as one unit of kitchenware.
- In c₁, the mortar counts as one unit of kitchenware.
- These two instances of kitchenware overlap and count as one in different contexts.

(Sutton & Filip 2016:fig.1)

- Sutton & Filip: Object mass nouns (in English) lack both sorts of countability due to being unable to resolve overlap.
- 1. *Kitchenware* cannot count instances due to being unable to resolve overlap between instances that can count as one.
 - e.g. a mortar and pestle and the mortar (2016).
- 2. *Furniture* cannot count subkinds due to being unable to resolve overlap between kinds (in a level of categorization) that can count as one.
 - e.g. vanities and chairs (2018).

- Some chairs are parts of vanities.
- Such chairs cause overlap between chairs and vanities as kinds.

Challenge to disjointedness

- Sutton & Filip: Object mass nouns (in English) lack both sorts of countability due to being unable to resolve overlap.
- Appealing to disjointedness is challenged by two cases where the two sorts of countability do not pattern together.

		instances	subkinds	
1.	student	yes	no	(Kwak 2012)
2.	<i>lőszer</i> 'ammunition'	no	yes	

Challenge to disjointedness: Student

- 1. Two students are popular, namely
 - a. Jack and Jade. *instances*
 - b. # juniors and seniors. *subkinds* (cf. Kwak 2012)
- 2. (Two kinds of students are popular, namely juniors and seniors.)
- *Student* is count, so Sutton & Filip (2018) would say that
- It is interpreted relative to contexts that resolve overlap between kinds of students.
- Overlap should not prevent the subkind-countability of *student*, so
- Appealing to disjointedness does not explain the infelicity of (1b).

Challenge to disjointedness: Lőszer

- Lőszer 'ammunition' can count subkinds but not instances.
- # Két lőszert számoltam. (Erbach 2019:ex.6.32) two ammunition_{acc} count_{1.sg.pst} × 'I counted two pieces of ammunition.'
- 2. (Két darab lőszert számoltam.) darab 'piece' (ibid.)
- Két lőszert nem árulok: üreges golyókat es lágypontos golyókat. two ammo_{acc} no sell_{1.sg}: hollow.point bullet_{pl.acc} and soft.point... √ 'I do not sell two (kinds of) ammunition: hollow-point bullets...'

Challenge to disjointedness: Hungarian

- Lőszer 'ammunition' can count subkinds but not instances.
- The same goes for *üvegáru* 'glassware' and *ruházat* 'apparel'.
- An appeal to disjointedness might posit that
- Object mass nouns in Hungarian, not English, are interpreted relative to contexts that resolve overlap between subkinds.
 - (In a given level of categorization.)
- But this does not predict which languages should pattern with Hungarian or English.

Challenge to disjointedness: Full picture

		instances	subkinds	
1.	student	yes	no	(sl. <u>10</u>)
2.	<i>lőszer</i> 'ammunition' <i>üvegáru</i> 'glassware' <i>ruházat</i> 'apparel'	no	yes	(sl. <u>11</u>)
3.	ammunition	no	no	(sl. <mark>4</mark>)

- The subkind-countability in (1-2) is unexplained by Sutton & Filip's (2018) appeal to disjointedness.
- It is explained by our analysis of subkind-countability, which builds on the analyses of Carlson (1980) and Grimm & Levin (2017).

Previous analyses: Carlson (1980)

- A noun can count subkinds only if
- 1. Carlson (1980): The speaker knows nouns that name subkinds.
- Many {virtues, #courages} (§7, ex.109)
- Predicted for speakers who know nouns for kinds of virtue (e.g. *honesty*) but not of courage.

- A noun can count subkinds only if
- 1. Carlson (1980): The speaker knows nouns that name subkinds.
- 2. Grimm & Levin (2017): It heads a taxonomy. (in the sense of Murphy 2002)
 - 1. vehicles V 'kinds of vehicles'

- 1. The sub-element relation is transitive.
 - 1. Every limo is a car.
 - 2. Every car is a vehicle.

- A noun can count subkinds only if
- 1. Carlson (1980): The speaker knows nouns that name subkinds.
- 2. Grimm & Levin (2017): It heads a taxonomy.
 - 1. vehicles V 'kinds of vehicles'
 - 2. # mails × 'kinds of mail'

- 1. The sub-element relation is transitive.
 - 1. Every limo is a car.
 - 2. Every car is a vehicle.
- 2. The sub-element relation is not transitive.
 - Not every magazine is mail.
 - A magazine that is not being delivered is not mail.

Previous analyses: Criticism

- A noun can count subkinds only if
- 1. Carlson (1980): The speaker knows nouns that name subkinds.
- 2. Grimm & Levin (2017): It heads a taxonomy.
- (1) has a limitation, (2) an incorrect prediction.
- a. (1) does not account for *furniture* being unable to count subkind for speakers who know nouns for kinds of furniture (e.g. *chair*).
 - # If there's one furniture I can't stand, it's chairs.
 (cf. Cowper & Hall 2012:ex.8c, e)
- b. (2) incorrectly predicts *pet, sport* to lack subkind-countability.

Previous analyses: Criticism

- G&L (2017): A noun can count subkinds only if it heads a taxonomy.
- Incorrectly predicts *pet, sport* to lack subkind-countability.
 - # mails × 'kinds of mail'
 - 2. The next two pets [...] are birds [...] and rabbits (Refinetti 2016:618)
 - 3. Karate and swimming? [...] which **two sports** you would put together [γ]
 - Karate used for violence is not sport.

Previous analyses: Criticism

- A noun is subkind-countable only if
- 1. Carlson (1980): The speaker knows nouns that name subkinds.
- 2. Grimm & Levin (2017): It heads a taxonomy.
- (1) has a limitation, (2) an incorrect prediction.
- These are remedied by formalizing and modifying an integrated analysis.

- N is a noun in language L whose intension under the instance reading is [[inst N]]. N can count subkinds iff
 - 1. $\llbracket_{inst} N \rrbracket$ is partitioned by a (non-singleton) set of properties \mathcal{R} s.t.
 - 2. every $Q \in \mathcal{R}$ is denoted by a noun in L
- a. Vehicle can count subkinds because English has enough nouns to denote properties in a set that partitions [[_{inst} vehicle]]. (sl.<u>15</u>)
 - e.g. *car*, *boat* (sl.<u>15</u>)

- N is a noun in language L whose intension under the instance reading is [[inst N]]. N can count subkinds iff
 - 1. $\llbracket_{inst} N \rrbracket$ is partitioned by a (non-singleton) set of properties \mathcal{R} s.t.
 - 2. every $Q \in \mathcal{R}$ is denoted by a noun in L
- a. *Vehicle* can count subkinds because English has enough nouns to denote properties in a set that partitions [[_{inst} vehicle]]. (sl.<u>15</u>)
- b. *Mail* cannot count subkinds because English lacks enough nouns to denote properties in a set that partitions [[_{inst} mail]]. (sl.<u>17</u>)
 - \llbracket_{inst} magazine \rrbracket cannot be in \mathcal{R} because not every magazine is mail. (sl.<u>18</u>)

- N is a noun in language L whose intension under the instance reading is [[inst N]]. N can count subkinds iff
 - 1. $\llbracket_{inst} N \rrbracket$ is partitioned by a (non-singleton) set of properties \mathcal{R} s.t.
 - 2. every $Q \in \mathcal{R}$ is denoted by a noun in L
- a. *Vehicle* can count subkinds because English has enough nouns to denote properties in a set that partitions [[_{inst} vehicle]]. (sl.<u>15</u>)
- b. *Mail* cannot count subkinds because English lacks enough nouns to denote properties in a set that partitions [[_{inst} mail]]. (sl.<u>17</u>)
- c. *Courage* is predicted to not be able to count subkinds for speakers who do not know nouns for kinds of courage. (sl.<u>14</u>)

- N is a noun in language L whose intension under the instance reading is [[inst N]]. N can count subkinds iff
 - 1. $\llbracket_{inst} N \rrbracket$ is partitioned by a (non-singleton) set of properties \mathcal{R} s.t.
 - 2. every $Q \in \mathcal{R}$ is denoted by a noun in L
- This integrated analysis is greater than the sum of its inspirations; it predicts *student* to lack subkind-countability. (sl.<u>10</u>)
- Student cannot count subkinds because English lacks enough nouns to denote properties in a set that partitions [[inst student]].
- English has nouns like *junior* and *senior*, but no noun counterparts of 1st grader or BA student.

- N is a noun in language L whose intension under the instance reading is [[inst N]]. N can count subkinds iff
 - 1. $\llbracket_{inst} N \rrbracket$ is partitioned by a (non-singleton) set of properties \mathcal{R} s.t.
 - 2. every $Q \in \mathcal{R}$ is denoted by a noun in L
- 1. Inherits the incorrect prediction of Grimm & Levin (2017). (sl.20)
- 2. Incorrectly predicts nouns like *meat* to lack subkind-countability.
- Remedying these results in our alternative analysis of subkindcountability.

Analysis: Meat

- N is a noun in language L whose intension under the instance reading is [[inst N]]. N can count subkinds iff
 - 1. $\llbracket_{inst} N \rrbracket$ is partitioned by a (non-singleton) set of properties \mathcal{R} s.t.
 - 2. every $Q \in \mathcal{R}$ is denoted by a noun in L
- *Meat* can count subkinds: Two meats, namely beef and pork.
- *Meat* fails the condition: It ranges over sums of beef and pork, but no noun that names a kind of meat ranges over such sums.
- Thus, [[_{inst} meat]] is not partitioned by a set of properties that are named by English nouns.

Analysis: Meat

- 1. $\llbracket_{inst} beef \rrbracket = [w_1 \rightarrow \{\textcircled{}\}]$
- 2. $\llbracket_{inst} pork \rrbracket = \llbracket w_1 \rightarrow \{ \Im_1, \Im_2, \Im_1 \lor \Im_2 \} \rrbracket$
- [[inst pork]]_{w1} is cumulative, following the standard analysis of mass nouns having cumulative extensions.
 - (Quine 1960:§19, Link 1983, Krifka 1989, 2007)

Analysis: Meat

1.
$$\llbracket_{inst} beef \rrbracket = \llbracket w_1 \rightarrow \{ \textcircled{o} \} \rrbracket$$

2. $\llbracket_{inst} pork \rrbracket = \llbracket w_1 \rightarrow \{ \textcircled{o}_1, \textcircled{o}_2, \textcircled{o}_1 \lor \textcircled{o}_2 \} \rrbracket$
3. $\llbracket_{inst} meat \rrbracket = \llbracket w_1 \rightarrow \{ \textcircled{o}_1, \textcircled{o}_2, \textcircled{o}_1 \lor \textcircled{o}_2 \\ \textcircled{o}_1 \lor \textcircled{o}_2, \textcircled{o}_1 \lor \textcircled{o}_2 \\ \textcircled{o}_1 \lor \textcircled{o}_2, \textcircled{o}_1 \lor \textcircled{o}_2 \\ \textcircled{o}_1 \lor \textcircled{o}_2 \\ \textcircled{o}_2, \textcircled{o}_1 \lor \textcircled{o}_2 \\ \end{matrix}$

- \mathcal{R} partitions P only if every instance of P instantiates some $Q \in \mathcal{R}$

Analysis: Classified sub-property

- To capture the subkind-countability of *meat*, we require *R* to partition not [[_{inst} N]] but the classified sub-property [[_{inst} N]]_{CLS}.
- $[[_{inst} N]]_{CLS}$ consists of sums of a single kind.

3.
$$\llbracket_{inst} meat \rrbracket = \begin{bmatrix} w_1 \rightarrow \begin{cases} w_1 \rightarrow \begin{cases} w_1 \rightarrow v & w_1 & w_2 \end{pmatrix} \\ w_1 \rightarrow v & w_2 & w_1 \end{pmatrix} \\ w_1 \rightarrow v & w_2 & w_1 \end{pmatrix} \end{bmatrix}$$

4. $\llbracket_{inst} meat \rrbracket_{CLS} = \begin{bmatrix} w_1 \rightarrow \begin{cases} w_1 \rightarrow v & w_2 \end{pmatrix} \\ w_1 \rightarrow v & w_2 \end{pmatrix} \end{bmatrix}$

Analysis: Classified sub-property

1.
$$\llbracket_{inst}$$
 beef \rrbracket = $\llbracket w_1 \rightarrow \{\textcircled{O}\}$]
2. \llbracket_{inst} pork \rrbracket = $\llbracket w_1 \rightarrow \{\textcircled{O}_1 & \textcircled{O}_2 & \textcircled{O}_1 \lor & \textcircled{O}_2\}$]
4. \llbracket_{inst} meat \rrbracket_{CLS} = $\llbracket w_1 \rightarrow \{\textcircled{O}_1 & \textcircled{O}_2 & \textcircled{O}_1 \lor & \textcircled{O}_2\}$]

- \mathcal{R} partitions P only if every instance of P instantiates some $Q \in \mathcal{R}$
- A set consisting of (1-2) meets this condition for (4).
- Appealing to the classified sub-property results in the following condition of subkind-countability.

Analysis: Classified sub-property

- N is a noun in language L whose intension under the instance reading is [[inst N]]. N can count subkinds iff
 - 1. $\llbracket_{inst} N \rrbracket_{CLS}$ is partitioned by a (non-singleton) set of properties \mathcal{R} s.t.
 - 2. every $Q \in \mathcal{R}$ is denoted by a noun in L
- Meat can count subkinds because English has enough nouns to denote properties in a set that partitions [[inst meat]]_{CLS}.
 - e.g. *beef*, *pork* (sl.<u>31</u>)
- This condition accounts for the previous data (sl.<u>24</u>-<u>25</u>).
- Next, we attend to the subking-countability of *pet* and *sport* (sl.<u>20</u>).

- Reflecting that *pet* and *sport* can count subkinds is achieved by appealing to spreading over instead partition (aka disjoint cover).
- P is a property, \mathcal{R} is a set of properties Everything that P instantiates is instantiated by some $Q \in \mathcal{R}$
- 1. \mathcal{R} covers P iff for every $Q \in \mathcal{R}, Q \subset P$ Q is a strict sub-property of P
- 2. \mathcal{R} spreads over P iff for every $Q \in \mathcal{R}, Q \cap P \neq \lambda w. \emptyset$ Q overlaps with P

- 1. $\llbracket_{inst} bird \rrbracket = [w_1 \rightarrow \{ \underset{pet}{\overset{\frown}{\Longrightarrow}}_{pet}, \underset{wild}{\overset{\frown}{\boxtimes}}_{wild} \}]$
- 2. \llbracket rabbit \rrbracket = $[w_1 \rightarrow \{ \mathcal{G}_{pet}, \mathcal{G}_{wild} \}]$
- 3. $\llbracket \text{inst pet} \rrbracket = \llbracket w_1 \rightarrow \{ \textcircled{s}_{pet}, \textcircled{s}_{pet} \} \rrbracket$
- (1) is not a strict sub-property of (3) due to strict, so a set consisting of (1-2) does not cover (3). (sl.<u>33</u>)
- (1) overlaps with (3) due to \$\overlaps_{pet}\$, and
 (2) overlaps with (3) due to \$\overlaps_{pet}\$, so
 a set consisting of (1-2) spreads over (3). (sl.33)

- Reflecting that *pet* and *sport* can count subkinds is achieved by appealing to spreading over instead partition (aka disjoint cover).
- P is a property, \mathcal{R} is a set of properties Everything that P instantiates is instantiated by some $Q \in \mathcal{R}$
- 1. \mathcal{R} covers P iff for every $Q \in \mathcal{R}, Q \subset P$ Q is a strict sub-property of P
- 2. \mathcal{R} spreads over P iff for every $Q \in \mathcal{R}, Q \cap P \neq \lambda w. \emptyset$ Q and P overlap
- Appealing to spreading over results in our analysis of subkindcountability.

- N is a noun in language L whose intension under the instance reading is [[inst N]]. N can count subkinds iff
 - 1. $\llbracket_{inst} N \rrbracket_{CLS}$ is spread over by a (non-singleton) set of properties \mathcal{R} s.t.
 - 2. every $Q \in \mathcal{R}$ is denoted by a noun in L
- a. *Pet* can count subkinds because English has enough nouns to denote properties in a set that spreads over \llbracket_{inst} pet \rrbracket_{CLS} .
 - e.g. bird, rabbit (sl.20)
- b. *Sport* can count subkinds because English has enough nouns to denote properties in a set that spreads over \llbracket_{inst} sport \rrbracket_{CLS} .
 - e.g. karate, swimming (sl.20)

Analysis: Object mass nouns

- 1. two ammunition(s) × 'two units' × 'two kinds' (sl.4)
- 2. két lőszer × 'two units' √ 'two kinds' (sl.<u>11</u>)
 - Also *üvegáru* 'glassware', *ruházat* 'apparel'.
- Our analysis of subkind-countability correlates this with Hungarian but not English having general number. (Corbett 2000, Paul 2012)

Analysis: General number

- Assume: The set-denotation of nouns is revealed by predicative uses.
- Ez a két golyó golyó.
 this the two bullet bullet
 'These two bullets are bullets.'
- 2. These two bullets are #(a) bullet. **D** *false*
- Conclusion: The basic set-denotation of (notionally) count nouns (e.g. *golyó* and *bullet*) is
 - 1. Cumulative in Hungarian. (cf. Rullmann & You 2006:ex.19)
 - 2. Not cumulative in English. (quantized or disjoint, analysis-dependent)

Analysis: General number

- Conclusion: The basic set-denotation of (notionally) count nouns is
 - 1. Cumulative in Hungarian. (cf. Rullmann & You 2006:ex.19)
 - 2. Not cumulative in English. (Quantized or disjoint, analysis-dependent.)
- The bullets in w₁ are
 ,
 and
- 1. [[bullet]]_{w1} = {▶, ▶, ▶}

non-cumulative

cumulative (cf. Rullmann & You 2006:ex.19)

• This difference makes it harder for object mass nouns in English to meet the condition of subkind-countability (sl.<u>36</u>).

- 1. \llbracket_{inst} hollow-point bullet $\rrbracket = \llbracket w_1 \rightarrow \{ \mathbb{P} \} \rrbracket$
- 2. $\llbracket_{inst} \text{ soft-point bullet} \rrbracket = [w_1 \rightarrow \{v_1, v_2\}]$
- [[inst soft-point bullet]]_{w1} is non-cumulative, i.e. it precludes p₁Vp₂, following English lacking general number (sl.<u>39</u>).

- 1. \llbracket_{inst} hollow-point bullet $\rrbracket = \llbracket w_1 \rightarrow \{ {\tt P} \}$] 2. \llbracket_{inst} soft-point bullet $\rrbracket = \llbracket w_1 \rightarrow \{ {\tt P}_1, {\tt P}_2 \}$]
- $= \begin{bmatrix} w_1 \rightarrow \begin{cases} v_1 & v_2 \\ v_1 & v_2 & v_2 \\ v_1 & v_2 & v_2 \\ v_1 & v_2 & v_2 \end{bmatrix}$ 3. [[_{inst} ammunition]]
- [[inst ammunition]]_{w1} is cumulative, following the standard analysis of mass nouns having cumulative extensions. (sl.28)
 - (Quine 1960:§19, Link 1983, Krifka 1989, 2007)

- 1. \llbracket_{inst} hollow-point bullet $\rrbracket = [w_1 \rightarrow \{P\}]$
- 2. $\llbracket_{inst} \text{ soft-point bullet} \rrbracket = [w_1 \rightarrow \{v_1, v_2\}]$
- 4. $\llbracket_{\text{inst}} \text{ ammunition} \rrbracket_{\text{CLS}} = \begin{bmatrix} w_1 \rightarrow \left\{ \begin{smallmatrix} & \mathbf{D}_1 \vee \mathbf{D}_2 \\ & \mathbf{D}_1 & \mathbf{D}_2 \end{smallmatrix} \right\} \end{bmatrix}$
- *R* spreads over P only if every instance of P instantiates some Q ∈ *R*(sl.<u>33</u>)
- A set consisting of (1-2) does not spread over (4) due to 1/2

- N is a noun in language L whose intension under the instance reading is [[inst N]]. N can count subkinds iff
 - 1. $\llbracket_{inst} N \rrbracket_{CLS}$ is spread over by a (non-singleton) set of properties \mathcal{R} s.t.
 - 2. every $Q \in \mathcal{R}$ is denoted by a noun in L
- Object mass nouns in English cannot count subkinds because
- They have cumulative reference, so their classified sub-property instantiates plural sums of a single kind (e.g. p1Vp2).
- 2. Too many subkinds are named by count nouns, which in English do not range over such sums (sl.<u>39</u>).
 - e.g. [[_{inst} soft-point bullet]] does instantiate D₁VD₂ (sl.<u>41</u>).

Analysis: Object mass nouns, Hungarian

- N is a noun in language L whose intension under the instance reading is [[inst N]]. N can count subkinds iff
 - 1. $\llbracket_{inst} N \rrbracket_{CLS}$ is spread over by a (non-singleton) set of properties \mathcal{R} s.t.
 - 2. every $Q \in \mathcal{R}$ is denoted by a noun in L
- (Notionally) count nouns in Hungarian have cumulative reference. (sl.<u>38</u>)
- Subkinds being named by such nouns does not prevent object mass nouns from satisfying the condition.

Analysis: Object mass nouns

- N is a noun in language L whose intension under the instance reading is [[inst N]]. N can count subkinds iff
 - 1. $\llbracket_{inst} N \rrbracket_{CLS}$ is spread over by a (non-singleton) set of properties \mathcal{R} s.t.
 - 2. every $Q \in \mathcal{R}$ is denoted by a noun in L
- a. *Lőszer* can count subkinds because Hungarian has enough nouns to denote properties in a set that spreads over \llbracket_{inst} lőszer \rrbracket_{CLS} .
- b. Ammunition cannot count subkinds; English lacks enough nouns to denote properties in a set that spreads over [[_{inst} ammunition]]_{CLS}.
 - English lacks enough nouns which name kinds of ammunition and range over plural sums of a single kind (e.g. 1

Analysis: Further issues

- The next slides address the following questions.
- 1. What is the source of the condition of subkind-countability?
- 2. What is its purpose?
- 3. Why does it appeal to nouns?
- 4. What are its cross-linguistic predictions?

Analysis: Source

- Proposal: The condition of subkind-countability is
- a definedness-condition on the output of a covert element roughlysynonymous with *kind*, notated SUBK.
- The same condition holds in Hungarian and English, but the difference in general number makes it so that
- 1. SUBK([[_{inst} ammunition]]) is undefined
- 2. SUBK([[inst *lőszer*]])

is defined

Analysis: Purpose

- Proposal: The purpose of the condition of subkind-countability is
- Preventing the output of SUBK from being the empty set.
- If a language has enough nouns to denote properties in a set that spreads over [[inst N]]_{CLS}, then
- SUBK([[_{inst} N]]) is guaranteed to be non-empty.
- A defined output of SUBK can include kinds that are not named by nouns. (contra Carlson 1980:§6.1-2)
 - 1. <u>Caged birds</u> are a popular **pet** in Afghanistan. $[\underline{\gamma}]$
 - 2. <u>Filled pastries</u> are a common **snack** in Mexico. (enTenTen13)

Analysis: Appeal to nouns

- Proposal: The condition appeals to nouns to prevent triviality.
- (1-2) are denoted by nouns, (3) is not.
 - 1. \llbracket_{inst} hollow-point bullet $\rrbracket = \llbracket w_1 \rightarrow \{ \mathbb{P} \} \rrbracket$ (sl.45) 2. \llbracket_{inst} soft-point bullet $\rrbracket = \llbracket w_1 \rightarrow \{ \mathbb{P}_1, \mathbb{P}_2 \} \rrbracket$ (sl.45) 3. $\llbracket w_1 \rightarrow \{ \mathbb{P}_1 \lor \mathbb{P}_2 \} \rrbracket$ 4. \llbracket_{inst} ammunition \rrbracket_{CLS} $= \llbracket w_1 \rightarrow \{ \mathbb{P}_1 \lor \mathbb{P}_2 \} \rrbracket$ (sl.45)
- (4) is spread over by a set consisting of (1-3).
- Appealing to nouns constrains an otherwise trivial condition.

Analysis: Appeal to nouns

- Under the hypothesis that nouns but not NPs correspond to concepts,
 (Carlson 2010:§4, McNally 2017)
- The condition of subkind-countability checks whether the conceptcorrelate of the noun has enough sub-concepts in the language.
- In other words, it checks whether the concept-correlate of the noun is conceptually well-founded in the language.
- Thus, we say that subkind-countability is licensed by conceptual well-foundedness rather than disjointedness.
 - Contra Sutton & Filip (2018).

Analysis: Prediction

- The prediction concerns languages with (near-)synonyms that differ in instance-countability, e.g. Hungarian and English.
- 1. If the language has general number (e.g. Hungarian), then in each pair, members should have identical subkind-countability.
 - Either both can count subkinds or neither can.
- Borne out in that both members of each pair can count subkinds.

cannot count instances can count instances

- golyó 'bullet' a. lőszer 'ammunition' poharat (drinking) glass
- b. üvegáru 'glassware'
- c. ruházat 'apparel' ruha 'garment'

Analysis: Prediction

- The prediction concerns languages with (near-)synonyms that differ in instance-countability, e.g. Hungarian and English.
- 1. If the language has general number (e.g. Hungarian), then in each pair, members should have identical subkind-countability.
- 2. If the language lacks general number (e.g. English), then in some pairs, the two sorts of countability should pattern together.
- Borne out in pairs like *bullet* and *ammunition*, where
 - 1. *Bullet* can count instances and subkinds. (sl.<u>4</u>)
 - 2. Ammunition lacks both sorts of countability. (sl.4)

Analysis: Prediction

- The prediction concerns languages with (near-)synonyms that differ in instance-countability, e.g. Hungarian and English.
- 1. If the language has general number (e.g. Hungarian), then in each pair, members should have identical subkind-countability.
- 2. If the language lacks general number (e.g. English), then in some pairs, the two sorts of countability should pattern together.
- Thus far, the analysis has made correct predictions for Dutch (De Belder 2013), Hebrew, Japanese and Brazilian Portuguese (in prep).

Conclusion

- Subkind-countability is licensed by conceptual well-foundedness, not disjointedness. _{contra Sutton & Filip (2018)}
- Two seemingly unrelated facts about Hungarian are correlated.
- 1. Bare (notionally) count nouns range over singularities and pluralities. (Farkas & de Swart 2003)
- 2. At least three object mass nouns can count subkinds, unlike their English counterparts.
 - *lőszer* 'ammunition', *üvegáru* 'glassware', *ruházat* 'apparel'

Thank you!

The independence of instance and subkind countability Aviv Schoenfeld Kurt Erbach Tel Aviv University Universität Bonn 15th International Conference on the Structure of Hungarian August 26th 2021, 9:40-10:20, University of Pécs

Data: Hungarian

- Elicitation sessions with four native speaking Hungarian adult consultants (born and raised in Hungary in Hungarian speaking households; three from Budapest, one from Pécs).
- English was used as the meta-language. (Matthewson 2004)
- Consultants were asked to provide felicity judgments on a seven-point Likert scale from 1 (`very unnatural') to 7 (`very natural').
- They were invited to provide any thoughts that they had about the context and target item.

Data: Hungarian

- Lőszer 'ammunition' can count subkinds but not instances (sl.11).
- The same goes for *üvegáru* 'glassware' and *ruházat* 'apparel'.
- That these nouns cannot count instances is not due to their dictionary meaning; they have (near-)synonyms that can.
 - (cf. Wisniewski et al. 1996, Casey 1997)

	cannot count instances		can coun	t instances
1.	lőszer	'ammunition'	golyó	'bullet'
2.	üvegáru	'glassware'	poharat	'(drinking) glass
3.	ruházat	'apparel'	ruha	'garment'

Data: Hungarian

- *Lőszer* 'ammunition' can count subkinds but not instances (sl.11).
- The same goes for *üvegáru* 'glassware' and *ruházat* 'apparel'.
- That these nouns cannot count instances is not due to their dictionary meaning; they have (near-)synonyms that can.
 - (cf. Wisniewski et al. 1996, Casey 1997)
- These (near-)synonyms can both count subkinds.
- 1. két golyó V 'two bullet units' V 'two kinds of bullets'
- 2. két lőszer \times 'two units of ammo' $\sqrt{100}$ (two kinds of ammo'

Grimm & Levin (2017)

- \mathcal{R}_1 covers _(and partitions) [[_{inst} pet]], but its members are not denoted by *bird* or *rabbit* if w₁ has wild birds and wild rabbits.
- 1. Not every $Q \in \mathcal{R}_2$, $Q \subset \llbracket_{inst} pet \rrbracket$ \mathcal{R}
- 2. Every $Q \in \mathcal{R}_2$, $Q \cap \llbracket_{inst} pet \rrbracket \neq \lambda w. \emptyset$ \mathcal{R}_2 spreads over $\llbracket_{inst} pet \rrbracket$

 $\begin{array}{l} \mathcal{R}_2 \text{ does not cover } \llbracket_{\text{inst}} \text{ pet} \rrbracket \\ \mathcal{R}_2 \text{ spreads over } \llbracket_{\text{inst}} \text{ pet} \rrbracket \end{array}$

$$\mathcal{R}_{1} = \{ [w_{1} \rightarrow \{ \underbrace{\mathbb{S}}_{pet} \}], \qquad [w_{1} \rightarrow \{ \underbrace{\mathbb{S}}_{pet} \}] \}$$

$$[[w_{1} \rightarrow \{ \underbrace{\mathbb{S}}_{pet}, \underbrace{\mathbb{S}}_{pet} \}]$$

$$\mathcal{R}_{2} = \{ [w_{1} \rightarrow \{ \underbrace{\mathbb{S}}_{pet}, \underbrace{\mathbb{S}}_{wild} \}], \qquad [w_{1} \rightarrow \{ \underbrace{\mathbb{S}}_{pet}, \underbrace{\mathbb{S}}_{wild} \}] \}$$

- N is a noun in language L whose intension under the instance reading is [[inst N]]. N can count subkinds iff
 - 1. $\llbracket_{inst} N \rrbracket_{CLS}$ is spread over by a (non-singleton) set of properties \mathcal{R} s.t.
 - 2. every $Q \in \mathcal{R}$ is denoted by a noun in L
- Pet can count subkinds because English has enough nouns to denote properties in a set that spreads over [[inst pet]]_{CLS}.
 - e.g. bird, rabbit (sl.20)
- CLS plays no role with *pet*, but it does with *sport*.

Analysis: Spreading over, sport

- N is a noun in language L whose intension under the instance reading is [[inst N]]. N can count subkinds iff
 - 1. $\llbracket_{inst} N \rrbracket_{CLS}$ is spread over by a (non-singleton) set of properties \mathcal{R} s.t.
 - 2. every $Q \in \mathcal{R}$ is denoted by a noun in L
- [[inst sport]] instantiates sums of karate and swimming, but no noun that names a kind of sport ranges over such sums.
- Thus, [[inst sport]] is not spread over by a set of properties that are named by English nouns. (cf. sl.27)

Analysis: Spreading over, sport

- N is a noun in language L whose intension under the instance reading is [[inst N]]. N can count subkinds iff
 - 1. $\llbracket_{inst} N \rrbracket_{CLS}$ is spread over by a (non-singleton) set of properties \mathcal{R} s.t.
 - 2. every $Q \in \mathcal{R}$ is denoted by a noun in L
- [[inst sport]] instantiates sums of karate and swimming, but no noun that names a kind of sport ranges over such sums.
- Such sums are precluded from \llbracket_{inst} sport \rrbracket_{CLS} . (cf. sl.27)
- Sport can count subkinds because English has enough nouns to denote properties in a set that spreads over [[inst sport]]_{CLS}.
 - e.g. karate, swimming (sl.20)

Carlson, Gregory N. 1980. *Reference to kinds in English*. New York & London: Garland.

Carlson, Gregory N. 2010. Generics and concepts. In Francis Jeffry Pelletier (ed.), Kinds, things, and stuff: Mass terms and generics, 16-35. New York: Oxford University Press.

Corbett, G. (2000). Number. Cambridge University Press.

Cowper, Elizabeth & Daniel Curry Hall. 2012. Aspects of individuation. In Diane Massam (ed.), Count and mass across languages, 27-53. Oxford: Oxford University Press.

De Belder, Marijke. 2013. Collective mass affixes: When derivation restricts functional structure. *Lingua* 126. 32-50.

Erbach, Kurt. 2019. Object mass nouns. Heinrich-Heine-Universität dissertation.

Farkas, Donka F. & Henriëtte de Swart. 2003. *The semantics of incorporation: From argument structure to discourse transparency*. Stanford: CSLI.

Grimm, Scott & Beth Levin. 2017. Artifact nouns: Reference and countability. In Andrew Lamont & Katerina Tetzloff (eds.), *Proceedings of the North East Linguistic Society (NELS) 47*, 55-64. Amherst: GLSA.

Hampton, James A. 1982. A demonstration of intransitivity in natural categories. *Cognition* 12(2). 151-166.

Krifka, Manfred. 1989. Nominal reference, temporal constitution and quantification in event semantics. In Johan van Benthem, Peter van Emde Boas and Renate Bartsch (eds.), *Semantics and contextual expressions*, 75-115.

Krifka, Manfred. 2007. Masses and countables: Cognitive and linguistic factors. Invited talk at *The syntax and semantics of measurement*, September 17-18, 2007, CASTL, University of Tromsø. Retrieved August 26, 2019 from <u>https://amor.cms.hu-berlin.de/~h2816i3x/Talks/Count-Mass-Distinction.pdf</u>

Kwak, Eun-Joo. 2012. Subkind readings of noun phrases with a numeral. English language and literature 58(3). 491-517.

Link, Godehard. 1983. The logical analysis of plurals and mass terms: A lattice-theoretical approach. In Rainer Bäuerle, Christoph Schwarze & Arnim von Stechow (eds.), *Meaning, use and interpretation of language*, 303-329. Berlin & New York: de Gruyter.

Matthewson, Lisa. 2004. On the methodology of semantic fieldwork. International journal of American linguistics 70. 369-415.

McNally, Louise. 2017. Kinds, descriptions of kinds, concepts, and distributions. In Wiebke Petersen & Kata Balogh (eds.), *Bridging formal and conceptual semantics: Selected papers of BRIDGE14*, 39-61. Düsseldorf: Düsseldorf University Press.

Paul, Ileana. 2012. General number and the structure of DP. In Diane Massam (ed.), Count and mass across languages, 99-111. Oxford: Oxford University Press.

Quine, William V. 1960. *Word and object*. Cambridge, Massachusetts: MIT Press.

Sutton, Peter R. & Hana Filip. 2016. Counting in context: Count/mass variation and restrictions on coercion in collective artifact nouns. In Mary Moroney, Carol-Rose Little, Jacob Collard & Dan Burgdorf (eds.), *Proceedings of SALT 26*, 350-370.

Sutton, Peter R. & Hana Filip. 2018. Restrictions on subkind coercion in superordinate object mass nouns. In Robert Truswell, Chris Cummins, Caroline Heycock, Brian Rabern & Hannah Rohde (eds.), *Proceedings of Sinn und Bedeutung 21*, 1195-213. University of Edinburgh.

Refinetti, Roberto. Circadian physiology. Boca Raton, FL: CRC Press.

Rothstein, Susan. 2017. Semantics for counting and measuring. Cambridge: Cambridge University Press.

Rullmann, Hotze & Aili You. 2006. General number and the semantics and pragmatics of indefinite bare nouns in Mandarin Chinese. In Klaus von Heusinger & Ken Turner (eds.), *Where semantics meets pragmatics*, 175-198. Amsterdam: Elsevier.